In deep learning applications, the architectures of deep neural networks are crucial in achieving high accuracy. Many methods have been proposed to search for high-performance neural architectures automatically. However, these searched architectures are prone to adversarial attacks. A small perturbation of the input data can render the architecture to change prediction outcomes significantly. To address this problem, we propose methods to perform differentiable search of robust neural architectures. In our methods, two differentiable metrics are defined to measure architectures' robustness, based on certified lower bound and Jacobian norm bound. Then we search for robust architectures by maximizing the robustness metrics. Different from previous approaches which aim to improve architectures' robustness in an implicit way: performing adversarial training and injecting random noise, our methods explicitly and directly maximize robustness metrics to harvest robust architectures. On CIFAR-10, ImageNet, and MNIST, we perform game-based evaluation and verification-based evaluation on the robustness of our methods. The experimental results show that our methods 1) are more robust to various norm-bound attacks than several robust NAS baselines; 2) are more accurate than baselines when there are no attacks; 3) have significantly higher certified lower bounds than baselines.


翻译:在深层学习应用中,深心神经网络的架构对于实现高精度至关重要。 许多方法被提议自动搜索高性能神经结构。 但是, 这些搜索的架构容易发生对抗性攻击。 输入数据的轻微扰动可以使结构显著改变预测结果。 为了解决这个问题, 我们提出了对强力神经结构进行不同搜索的方法。 在我们的方法中, 根据认证的较低约束度和Jacobian规范约束度, 界定了两种不同的计量标准来测量结构的稳健性。 然后, 我们通过尽量扩大稳健度测量标准来寻找稳健的架构。 与以前旨在以隐含方式改进结构稳健性的方法不同: 进行对抗性培训和注射随机噪音, 我们的方法可以明确和直接地最大限度地扩大稳健度度测量结构。 在 CICAR-10 、 图像网络 和 MNIST 上, 我们对方法的稳健性进行基于游戏的评价和基于核查的评价。 实验结果显示, 我们的方法 1) 比几个稳健的NAS基线更加稳健。 2) 在没有验证的基线时, 比基线更精确。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员