Neural Architecture Search (NAS) is an open and challenging problem in machine learning. While NAS offers great promise, the prohibitive computational demand of most of the existing NAS methods makes it difficult to directly search the architectures on large-scale tasks. The typical way of conducting large scale NAS is to search for an architectural building block on a small dataset (either using a proxy set from the large dataset or a completely different small scale dataset) and then transfer the block to a larger dataset. Despite a number of recent results that show the promise of transfer from proxy datasets, a comprehensive evaluation of different NAS methods studying the impact of different source datasets has not yet been addressed. In this work, we propose to analyze the architecture transferability of different NAS methods by performing a series of experiments on large scale benchmarks such as ImageNet1K and ImageNet22K. We find that: (i) The size and domain of the proxy set does not seem to influence architecture performance on the target dataset. On average, transfer performance of architectures searched using completely different small datasets (e.g., CIFAR10) perform similarly to the architectures searched directly on proxy target datasets. However, design of proxy sets has considerable impact on rankings of different NAS methods. (ii) While different NAS methods show similar performance on a source dataset (e.g., CIFAR10), they significantly differ on the transfer performance to a large dataset (e.g., ImageNet1K). (iii) Even on large datasets, random sampling baseline is very competitive, but the choice of the appropriate combination of proxy set and search strategy can provide significant improvement over it. We believe that our extensive empirical analysis will prove useful for future design of NAS algorithms.
翻译:神经结构搜索(NAS) 是机器学习中一个开放和具有挑战性的问题。 虽然NAS提供了巨大的前景, 但大多数现有的NAS方法的计算需求令人望而却步, 使得很难直接搜索大规模任务的结构。 大规模NAS 的典型方法是在小型数据集上搜索建筑结构块( 使用大型数据集的代用数据集或完全不同的小型数据集), 然后将数据集的大小和范围转移到更大的数据集。 尽管最近的一些结果显示从代理数据集中传输的可能性, 但对不同源数据集影响的NAS 方法的全面评估尚未得到解决。 在这项工作中, 我们提议通过在图像Net1K 和图像Net22K 等大型基准上进行一系列实验来分析不同NAS 方法的结构可转移性。 我们发现:(一) 代用数据集的大小和域似乎不会影响目标数据集的架构性能。 平均而言, 将未来结构的性能通过完全不同的小型数据集搜索(e. g., CIFAR10) 进行类似性能分析, 以不同的指标设计。 然而, 系统的数据性能的大规模的性能分析是不同的数据分析。 。 系统内部系统 的大规模数据分析。 系统 的性能, 运行的性能, 不同性能 的性能的性能 的性能 的性能分析。