Instrumental variables regression is a popular causal inference method for endogenous treatment. A significant concern in practical applications is the validity and strength of instrumental variables. This paper aims to perform causal inference when all instruments are possibly invalid. To do this, we propose a novel methodology called two stage curvature identification (TSCI) together with a generalized concept to measure the strengths of possibly invalid instruments: such invalid instruments can still be used for inference in our framework. We fit the treatment model with a general machine learning method and propose a novel bias correction method to remove the overfitting bias from machine learning methods. Among a collection of spaces of violation functions, we choose the best one by evaluating invalid instrumental variables' strength. We demonstrate our proposed TSCI methodology in a large-scale simulation study and revisit the important economics question on the effect of education on earnings.
翻译:仪器变量回归是国内治疗的一种流行的因果推断方法。实际应用中的一个重要关注点是工具变量的有效性和强度。本文件旨在在所有工具可能无效的情况下进行因果推断。为此,我们提出一种称为两个阶段曲线识别(TSCI)的新颖方法,同时提出一个衡量可能无效工具的优点的通用概念:这种无效工具仍可用于在我们的框架中进行推断。我们把治疗模式与一般机器学习方法相匹配,并提出一种新的偏见纠正方法,以消除机器学习方法中的过度偏差。在一系列违规功能中,我们通过评估无效工具变量的力量来选择最佳方法。我们在大规模模拟研究中展示了我们提议的TSCI方法,并重新审视了教育对收入影响的重要经济问题。