Optimal control problems naturally arise in many scientific applications where one wishes to steer a dynamical system from a certain initial state $\mathbf{x}_0$ to a desired target state $\mathbf{x}^*$ in finite time $T$. Recent advances in deep learning and neural network-based optimization have contributed to the development of methods that can help solve control problems involving high-dimensional dynamical systems. In particular, the framework of neural ordinary differential equations (neural ODEs) provides an efficient means to iteratively approximate continuous time control functions associated with analytically intractable and computationally demanding control tasks. Although neural ODE controllers have shown great potential in solving complex control problems, the understanding of the effects of hyperparameters such as network structure and optimizers on learning performance is still very limited. Our work aims at addressing some of these knowledge gaps to conduct efficient hyperparameter optimization. To this end, we first analyze how truncated and non-truncated backpropagation through time affect runtime performance and the ability of neural networks to learn optimal control functions. Using analytical and numerical methods, we then study the role of parameter initializations, optimizers, and neural-network architecture. Finally, we connect our results to the ability of neural ODE controllers to implicitly regularize control energy.
翻译:最佳控制问题自然出现在许多科学应用中,人们希望将一个动态系统从某个初始状态$mathbf{x ⁇ %0$引导从某个初始状态$mathbf{x ⁇ 0$引导到一个理想目标状态$mathbf{x ⁇ $x$x$x$t$。最近在深层次学习和神经网络优化方面取得的进步,有助于制定有助于解决高维动态系统控制问题的方法。特别是,神经普通差异方程式(神经元体)框架提供了一种有效的手段,以迭接方式大致地将连续的时间控制功能与分析难以处理和计算要求控制任务相关联。虽然神经内存控制器在解决复杂控制问题方面表现出巨大潜力,但对网络结构和神经网络优化对学习绩效的优化等超光谱仪效应的理解仍然非常有限。我们的工作旨在解决其中一些知识差距,以便进行高效的超光谱动态系统优化。为此,我们首先分析通过时间如何调整和非调整的反向反向回向,影响神经网络的运行性功能和学习最佳控制功能的能力。我们随后通过分析和数字分析方法,然后将精细化的能量控制模型连接到我们的能力。