Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian statistics. It is used for model selection using Bayes factors or for empirical Bayes tuning of prior hyper-parameters. Yet, the calculation of evidence has remained a longstanding open problem in Gaussian graphical models. Currently, the only feasible solutions that exist are for special cases such as the Wishart or G-Wishart, in moderate dimensions. We present an application of Chib's technique that is applicable to a very broad class of priors under mild requirements. Specifically, the requirements are: (a) the priors on the diagonal terms on the precision matrix can be written as gamma or scale mixtures of gamma random variables and (b) those on the off-diagonal terms can be represented as normal or scale mixtures of normal. This includes structured priors such as the Wishart or G-Wishart, and more recently introduced element-wise priors, such as the Bayesian graphical lasso and the graphical horseshoe. Among these, the true marginal is known in an analytically closed form for Wishart, providing a useful validation of our approach. For the general setting of the other three, and several more priors satisfying conditions (a) and (b) above, the calculation of evidence has remained an open question that this article resolves under a unifying framework.


翻译:在Bayesian统计中,边际可能性(也称为模型证据)是一个基本数量,用于使用Bayes系数进行模型选择,或用于经验性Bayes对先前的超参数进行比对;然而,在Gaussian图形模型中,证据的计算仍然是长期未解决的问题;目前,存在的唯一可行解决办法是用于Wishart或G-Wishart等中等层面的特例;我们采用了Chib技术的应用,该技术适用于在温和要求下非常广泛的先行类别;具体而言,这些要求是:(a)精确矩阵的对数术语的前缀可以写成伽马随机变量的伽马或比例混合;以及(b)非直径参数的计算可以作为正常或比例的混合物。这包括Wishart或G-Wishart等特等特特例的结构性前例,以及最近引入的要件,例如Bayesian图形拉索和图形马休。这些要求中,真正的边际关系以分析封闭的形式为Westart的精确矩阵,可以写成伽马变异变量的伽或比例混合组合;为正常的正常的正常的正常的预论,从而确定我们之前的另外三个条件。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
12+阅读 · 2022年4月30日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
53+阅读 · 2018年12月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员