Though convolutional neural networks are widely used in different tasks, lack of generalization capability in the absence of sufficient and representative data is one of the challenges that hinder their practical application. In this paper, we propose a simple, effective, and plug-and-play training strategy named Knowledge Distillation for Domain Generalization (KDDG) which is built upon a knowledge distillation framework with the gradient filter as a novel regularization term. We find that both the ``richer dark knowledge" from the teacher network, as well as the gradient filter we proposed, can reduce the difficulty of learning the mapping which further improves the generalization ability of the model. We also conduct experiments extensively to show that our framework can significantly improve the generalization capability of deep neural networks in different tasks including image classification, segmentation, reinforcement learning by comparing our method with existing state-of-the-art domain generalization techniques. Last but not the least, we propose to adopt two metrics to analyze our proposed method in order to better understand how our proposed method benefits the generalization capability of deep neural networks.


翻译:虽然在不同的任务中广泛使用进化神经网络,但缺乏足够和有代表性的数据,缺乏普遍化能力是阻碍其实际应用的挑战之一。在本文中,我们提出一个简单、有效、插插插式培训战略,名为“通用域知识蒸馏”(KDDG),该战略以知识蒸馏框架为基础,以梯度过滤器为新颖的正规化术语。我们发现,教师网络的“更丰富的黑暗知识”以及我们提议的梯度过滤器,都能够减少学习绘图的困难,从而进一步提高模型的普及能力。我们还进行了广泛的实验,以表明我们的框架可以大大改善不同任务中深层神经网络的普及能力,包括图像分类、分解、通过将我们的方法与现有最新水平域通用技术进行比较而加强学习。最后但并非最不重要的一点,我们提议采用两种衡量尺度来分析我们提出的方法,以便更好地了解我们提出的方法如何有利于深层神经网络的普及能力。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年6月15日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员