We demonstrate quantum advantage with several basic assumptions, specifically based on only the existence of OWFs. We introduce inefficient-verifier proofs of quantumness (IV-PoQ), and construct it from classical bit commitments. IV-PoQ is an interactive protocol between a verifier and a quantum prover consisting of two phases. In the first phase, the verifier is probabilistic polynomial-time, and it interacts with the prover. In the second phase, the verifier becomes inefficient, and makes its decision based on the transcript of the first phase. If the prover is honest, the inefficient verifier accepts with high probability, but any classical malicious prover only has a small probability of being accepted by the inefficient verifier. Our construction demonstrates the following results: (1)If one-way functions exist, then IV-PoQ exist. (2)If distributional collision-resistant hash functions exist (which exist if hard-on-average problems in $\mathbf{SZK}$ exist), then constant-round IV-PoQ exist. We also demonstrate quantum advantage based on worst-case-hard assumptions. We define auxiliary-input IV-PoQ (AI-IV-PoQ) that only require that for any malicious prover, there exist infinitely many auxiliary inputs under which the prover cannot cheat. We construct AI-IV-PoQ from an auxiliary-input version of commitments in a similar way, showing that (1)If auxiliary-input one-way functions exist (which exist if $\mathbf{CZK}\not\subseteq\mathbf{BPP}$), then AI-IV-PoQ exist. (2)If auxiliary-input collision-resistant hash functions exist (which is equivalent to $\mathbf{PWPP}\nsubseteq \mathbf{FBPP}$) or $\mathbf{SZK}\nsubseteq \mathbf{BPP}$, then constant-round AI-IV-PoQ exist.


翻译:我们以几个基本假设来展示量子优势, 特别是基于 OWF {Pfr{ { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 校数 { 校数 } 如果校数诚实, 低的验证员接受度的恶意校数只有很小的可能性。 我们的构造显示以下结果:(1) 如果单线函数存在, 校数 I- 基数 基数 基数 基数 (如果存在硬数 基数 基数 基数) 基数 基数 基数, 我们定义 基数 I- 基数 基数 基数 基数 基数 基数 I.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员