We demonstrate quantum advantage with several basic assumptions, specifically based on only the existence of OWFs. We introduce inefficient-verifier proofs of quantumness (IV-PoQ), and construct it from classical bit commitments. IV-PoQ is an interactive protocol between a verifier and a quantum prover consisting of two phases. In the first phase, the verifier is probabilistic polynomial-time, and it interacts with the prover. In the second phase, the verifier becomes inefficient, and makes its decision based on the transcript of the first phase. If the prover is honest, the inefficient verifier accepts with high probability, but any classical malicious prover only has a small probability of being accepted by the inefficient verifier. Our construction demonstrates the following results: (1)If one-way functions exist, then IV-PoQ exist. (2)If distributional collision-resistant hash functions exist (which exist if hard-on-average problems in $\mathbf{SZK}$ exist), then constant-round IV-PoQ exist. We also demonstrate quantum advantage based on worst-case-hard assumptions. We define auxiliary-input IV-PoQ (AI-IV-PoQ) that only require that for any malicious prover, there exist infinitely many auxiliary inputs under which the prover cannot cheat. We construct AI-IV-PoQ from an auxiliary-input version of commitments in a similar way, showing that (1)If auxiliary-input one-way functions exist (which exist if $\mathbf{CZK}\not\subseteq\mathbf{BPP}$), then AI-IV-PoQ exist. (2)If auxiliary-input collision-resistant hash functions exist (which is equivalent to $\mathbf{PWPP}\nsubseteq \mathbf{FBPP}$) or $\mathbf{SZK}\nsubseteq \mathbf{BPP}$, then constant-round AI-IV-PoQ exist.
翻译:我们以几个基本假设来展示量子优势, 特别是基于 OWF {Pfr{ { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 { 基数 校数 { 校数 } 如果校数诚实, 低的验证员接受度的恶意校数只有很小的可能性。 我们的构造显示以下结果:(1) 如果单线函数存在, 校数 I- 基数 基数 基数 基数 (如果存在硬数 基数 基数 基数) 基数 基数 基数, 我们定义 基数 I- 基数 基数 基数 基数 基数 基数 I.