Based on recent developments in optimal transport theory, we propose a novel model-selection strategy for Bayesian learning. More precisely, the goal of this paper is to introduce the Wasserstein barycenter of the posterior law on models, as a Bayesian predictive posterior, alternative to classical choices such as the maximum a posteriori and the model average Bayesian estimators. After formulating the general problem of Bayesian model selection in a common, parameter-free framework, we exhibit conditions granting the existence and statistical consistency of this estimator, discuss some of its general and specific properties, and provide insight into its theoretical advantages. Furthermore, we illustrate how it can be computed using the theoretical stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC] , and provide a numerical example for experimental validation of the proposed method.
翻译:根据最佳运输理论的最新发展,我们为巴伊西亚人学习提出了一个新的模式选择战略。更确切地说,本文件的目标是介绍作为巴伊西亚人预测后继者,作为贝伊西亚人预测后继者,替代传统选择的替代方法,如后继者最大值和贝耶斯人平均测算模型。我们在一个共同的、无参数的框架中提出了巴伊西亚模式选择的一般问题之后,展示了允许这一估计者存在和统计一致性的条件,讨论了其一些一般和具体特性,并提供了对其理论优势的深入了解。此外,我们说明了如何利用瓦塞斯斯坦空间的理论性梯度梯度梯度下行算法(SGD)进行计算,并在一份配套文件ArXiv:220432v2 [math.OC] 中引入了该方法的理论,并为试验性验证提供了数字实例。