Based on recent developments in optimal transport theory, we propose a novel model-selection strategy for Bayesian learning. More precisely, the goal of this paper is to introduce the Wasserstein barycenter of the posterior law on models, as a Bayesian predictive posterior, alternative to classical choices such as the maximum a posteriori and the model average Bayesian estimators. After formulating the general problem of Bayesian model selection in a common, parameter-free framework, we exhibit conditions granting the existence and statistical consistency of this estimator, discuss some of its general and specific properties, and provide insight into its theoretical advantages. Furthermore, we illustrate how it can be computed using the theoretical stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC] , and provide a numerical example for experimental validation of the proposed method.


翻译:根据最佳运输理论的最新发展,我们为巴伊西亚人学习提出了一个新的模式选择战略。更确切地说,本文件的目标是介绍作为巴伊西亚人预测后继者,作为贝伊西亚人预测后继者,替代传统选择的替代方法,如后继者最大值和贝耶斯人平均测算模型。我们在一个共同的、无参数的框架中提出了巴伊西亚模式选择的一般问题之后,展示了允许这一估计者存在和统计一致性的条件,讨论了其一些一般和具体特性,并提供了对其理论优势的深入了解。此外,我们说明了如何利用瓦塞斯斯坦空间的理论性梯度梯度梯度下行算法(SGD)进行计算,并在一份配套文件ArXiv:220432v2 [math.OC] 中引入了该方法的理论,并为试验性验证提供了数字实例。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员