This work investigates the use of neural networks admitting high-order derivatives for modeling dynamic variations of smooth implicit surfaces. For this purpose, it extends the representation of differentiable neural implicit surfaces to higher dimensions, which opens up mechanisms that allow to exploit geometric transformations in many settings, from animation and surface evolution to shape morphing and design galleries. The problem is modeled by a $k$-parameter family of surfaces $S_c$, specified as a neural network function $f : \mathbb{R}^3 \times \mathbb{R}^k \rightarrow \mathbb{R}$, where $S_c$ is the zero-level set of the implicit function $f(\cdot, c) : \mathbb{R}^3 \rightarrow \mathbb{R} $, with $c \in \mathbb{R}^k$, with variations induced by the control variable $c$. In that context, restricted to each coordinate of $\mathbb{R}^k$, the underlying representation is a neural homotopy which is the solution of a general partial differential equation.
翻译:这项工作调查了神经网络中允许高阶衍生物用于模拟光暗表面动态变化的神经网络的使用。 为此, 它将不同神经隐含表面的表达面扩大到更高维度, 这打开了机制, 允许在多种情况下利用几何变化, 从动画和表面进化到形状变形和设计画廊。 问题由表面的美元- 参数系列( $S_ c$) 模拟, 具体为神经网络函数 $f :\mathbb{ R%3\ times\mathbb{ R ⁇ k\ times\ mathb{ rightrow\ mathb{R} 美元 。 在这方面, $_ c$_ c$ 是隐含函数 $f(\ cdot, c):\ mathb{R} 3\ rightrowright {mathb{ R} 美元, 问题由以 $c\ mathbb{R ⁇ k$ 来标, 由控制变量 $c$ 。 在这方面, 限制在$\\\ maxbbbbbbl macal maqal macal mabal res mabal mabal malutional mabal rodustrismusmusmusmmmmmmmmmmmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmusmus.