Reliable multi-agent trajectory prediction is crucial for the safe planning and control of autonomous systems. Compared with single-agent cases, the major challenge in simultaneously processing multiple agents lies in modeling complex social interactions caused by various driving intentions and road conditions. Previous methods typically leverage graph-based message propagation or attention mechanism to encapsulate such interactions in the format of marginal probabilistic distributions. However, it is inherently sub-optimal. In this paper, we propose IPCC-TP, a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling. IPCC-TP learns pairwise joint Gaussian Distributions through the tightly-coupled estimation of the means and covariances according to interactive incremental movements. Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders. Extensive experiments on nuScenes and Argoverse 2 datasets demonstrate that IPCC-TP improves the performance of baselines by a large margin.
翻译:可靠的多智能体轨迹预测对于自主系统的安全规划和控制至关重要。与单智能体情况相比,同时处理多智能体的主要挑战在于建模由各种驾驶意图和道路条件引起的复杂社交相互作用。以往的方法通常利用基于图形的消息传递或注意机制,以边际概率分布的格式封装这些交互。然而,它本质上是次优的。在本文中,我们提出了IPCC-TP,一种基于增量Pearson相关系数的相关性感知模块,以改善多智能体交互建模。IPCC-TP通过紧密耦合的平均值和协方差估计来学习成对的联合高斯分布,根据交互性的增量移动。我们的模块可以方便地嵌入到现有的多智能体预测方法中,以扩展原始运动分布解码器。对nuScenes和Argoverse 2数据集的大量实验表明,IPCC-TP将基线的性能提高了很大程度。