The query model has generated considerable interest in both classical and quantum computing communities. Typically, quantum advantages are demonstrated by showcasing a quantum algorithm with a better query complexity compared to its classical counterpart. Exact quantum query algorithms play a pivotal role in developing quantum algorithms. For example, the Deutsch-Jozsa algorithm demonstrated exponential quantum advantages over classical deterministic algorithms. As an important complexity measure, exact quantum query complexity describes the minimum number of queries required to solve a specific problem exactly using a quantum algorithm. In this paper, we consider the exact quantum query complexity of the following two $n$-bit symmetric functions: $\text{MOD}_m^n(x) = |x| \bmod m$ and $$ \text{EXACT}_{k,l}^n(x) = \begin{cases} 1, &\text{if }|x| \in \{k,l\}, \\ 0, &\text{otherwise}, \end{cases} $$ where $|x|$ is the number of $1$'s in $x$. Our results are as follows: i) We present an optimal quantum algorithm for computing $\text{MOD}_m^n$, achieving a query complexity of $\lceil n(1-\frac{1}{m}) \rceil$ for $1 < m \le n$. This settles a conjecture proposed by Cornelissen, Mande, Ozols and de Wolf (2021). Based on this algorithm, we show the exact quantum query complexity of a broad class of symmetric functions that map $\{0,1\}^n$ to a finite set $X$ is less than $n$. ii) When $l-k \ge 2$, we give an optimal exact quantum query algorithm to compute $\text{EXACT}_{k,l}^n$ for the case $k=0$ or $k=1,l=n-1$. This resolves the conjecture proposed by Ambainis, Iraids and Nagaj (2017) partially.
翻译:根据查询模型,单次查询模型已经在经典和量子计算领域引起了广泛的兴趣。通常,按照查询复杂度的大小,可以比较量子和经典算法的优越性。确切量子查询算法在发展量子算法方面发挥了关键作用。例如,德沃斯-乔萨算法比经典确定性算法具有指数级的量子优势。作为一种重要的复杂度度量,确切量子查询复杂度描述用量子算法解决特定问题所需的最小查询数量。在本文中,我们考虑了以下两个n位对称函数的确切量子查询复杂度:$\text{MOD}_m^n(x) = |x| \bmod m$ 和 $$ \text{EXACT}_{k,l}^n(x) = \begin{cases} 1, &\text{如果}|x| \in \{k,l\}, \\ 0, &\text{否则}, \end{cases} $$ 这里 $|x|$ 是$x$中1出现的次数。我们的结果如下:i)我们提出了一种计算$\text{MOD}_m^n$的最优量子算法,对于 $1 < m \le n$,其查询复杂度为 $\lceil n(1-\frac{1}{m}) \rceil$。这一结果解决了由Cornelissen、Mande、Ozols和de Wolf (2021)提出的一个猜想。基于这一算法,我们证明了将$\{0,1\}^n$映射到有限集$X$的广泛类别的对称函数的确切量子查询复杂度小于$n$。ii)当 $l-k \ge 2$ 时,对于 $k=0$ 或 $k=1,l=n-1$ 的情况,我们给出了一种最优的确切量子查询算法来计算 $\text{EXACT}_{k,l}^n$ 。这在一定程度上解决了由Ambainis、Iraids和Nagaj (2017)提出的猜想。