We propose a quantum algorithm (in the form of a quantum oracle) that estimates the closeness of a given Boolean function to one that satisfies the ``strict avalanche criterion'' (SAC). This algorithm requires $n$ queries of the Boolean function oracle, where $n$ is the number of input variables, this is fewer than the queries required by the classical algorithm to perform the same task. We compare our approach with other quantum algorithms that may be used for estimating the closeness to SAC and it is shown our algorithm verifies SAC with the fewest possible calls to quantum oracle and requires the fewest samples for a given confidence bound.
翻译:我们建议一种量子算法(以量子器的形式)来估计特定布尔函数与符合“严格雪崩标准”(SAC)的功能的接近性。 这种算法要求对布尔函数符号进行一美元查询,其中输入变量数为零美元,这比古典算法要求完成同样任务的查询要少。我们比较了我们的方法与其他可用于估计与SAC的接近性的量子算法,并展示了我们的算法用尽可能少的量子标尺来验证SAC,并需要最少的样本来证明具有一定的信心。