This paper establishes single-letter formulas for the exact entanglement cost of simulating quantum channels under free quantum operations that completely preserve positivity of the partial transpose (PPT). First, we introduce the $\kappa$-entanglement measure for point-to-point quantum channels, based on the idea of the $\kappa$-entanglement of bipartite states, and we establish several fundamental properties for it, including amortization collapse, monotonicity under PPT superchannels, additivity, normalization, faithfulness, and non-convexity. Second, we introduce and solve the exact entanglement cost for simulating quantum channels in both the parallel and sequential settings, along with the assistance of free PPT-preserving operations. In particular, we establish that the entanglement cost in both cases is given by the same single-letter formula, the $\kappa$-entanglement measure of a quantum channel. We further show that this cost is equal to the largest $\kappa$-entanglement that can be shared or generated by the sender and receiver of the channel. This formula is calculable by a semidefinite program, thus allowing for an efficiently computable solution for general quantum channels. Noting that the sequential regime is more powerful than the parallel regime, another notable implication of our result is that both regimes have the same power for exact quantum channel simulation, when PPT superchannels are free. For several basic Gaussian quantum channels, we show that the exact entanglement cost is given by the Holevo--Werner formula [Holevo and Werner, Phys. Rev. A 63, 032312 (2001)], giving an operational meaning of the Holevo-Werner quantity for these channels.


翻译:本文为在自由量子操作下模拟量子频道,完全保存部分转换( PPT) 的假设性( PPT) 的精确纠缠成本建立了单字母公式。 首先, 我们引入了用于点到点量频道的 $kappa 的纠缠度量 。 基于两边国家 $kappa 纠缠的理念, 我们为此设定了几种基本属性, 包括摊销崩溃、 PPPT超级通道下的单调 、 迭代性、 正常化、 忠诚和不调和 。 其次, 我们引入并解决了在平行和相继环境中模拟量子频道( PPPPT) 的精确折叠记成本, 以及自由量频道( PPPT) 的直压值 。 我们提供的量级机制的最大 $\ kappappa- 折叠度成本是最大的, 由可共享的或生成的 直流流流流流流和直流的直流的直流数据显示一个直流的直流数据。, 这个直流的直流流的直流的直流的直流的直流的直流的直径数据是另一个直流的直流的直径流的直方的直方的直方的直方的直方的直方。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月18日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员