Text adventure games present unique challenges to reinforcement learning methods due to their combinatorially large action spaces and sparse rewards. The interplay of these two factors is particularly demanding because large action spaces require extensive exploration, while sparse rewards provide limited feedback. This work proposes to tackle the explore-vs-exploit dilemma using a multi-stage approach that explicitly disentangles these two strategies within each episode. Our algorithm, called eXploit-Then-eXplore (XTX), begins each episode using an exploitation policy that imitates a set of promising trajectories from the past, and then switches over to an exploration policy aimed at discovering novel actions that lead to unseen state spaces. This policy decomposition allows us to combine global decisions about which parts of the game space to return to with curiosity-based local exploration in that space, motivated by how a human may approach these games. Our method significantly outperforms prior approaches by 27% and 11% average normalized score over 12 games from the Jericho benchmark (Hausknecht et al., 2020) in both deterministic and stochastic settings, respectively. On the game of Zork1, in particular, XTX obtains a score of 103, more than a 2x improvement over prior methods, and pushes past several known bottlenecks in the game that have plagued previous state-of-the-art methods.


翻译:文本冒险游戏对强化学习方法提出了独特的挑战, 因为它们的组合性大动作空间和微薄的回报。 这两种因素的相互作用要求特别高, 因为大型行动空间需要广泛探索, 而微弱的回报则提供有限的反馈。 这项工作提议采用多阶段方法解决探索- 探索- 探索- 探索进进进进进进进进进进进进进进进进进进进进。 我们的算法叫做 exxploit- the Tour- e- eXplore (XTX), 使用一种仿照过去一系列充满希望的轨迹的剥削政策, 并随后转换为旨在发现新行动导致隐蔽状态空间的探索政策。 这一政策分化让我们能够结合全球决定, 利用基于好奇心的本地探索, 在每个插进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进到进到进到进进进进进进进进进到进到进到进进进进进进进进进进进进到进进进进进进到到到进进进进进进进进进进进进进进到到到到到进进进进进进进进进进进进进进进进进进进进进进进到到到到到到进进进进进进进进进进进进进进进进进进进进进进进进进进进进进到进到进到进到进进进进进进进进进进进进进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进到进进进到进到进到进到进到进到进到进到进到进到进进进进进进进进进进进进进进进进到进到进进进进进进进进进

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员