Given a regular multiset $M$ on $[n]=\{1,2,\ldots,n\}$, a partial order $R$ on $M$, and a label map $\pi : [n] \rightarrow \mathbb{N}$ defined by $\pi(i) = k_i$ with $\sum_{i=1}^{n}\pi (i) = N$, we define a pomset block metric $d_{(Pm,\pi)}$ on the direct sum $ \mathbb{Z}_{m}^{k_1} \oplus \mathbb{Z}_{m}^{k_2} \oplus \ldots \oplus \mathbb{Z}_{m}^{k_n}$ of $\mathbb{Z}_{m}^{N}$ based on the pomset $\mathbb{P}=(M,R)$. The pomset block metric extends the classical pomset metric introduced by I. G. Sudha and R. S. Selvaraj and generalizes the poset block metric introduced by M. M. S. Alves et al over $\mathbb{Z}_m$. The space $ (\mathbb{Z}_{m}^N,~d_{(Pm,\pi)} ) $ is called the pomset block space and we determine the complete weight distribution of it. Further, $I$-perfect pomset block codes for ideals with partial and full counts are described. Then, for block codes with chain pomset, the packing radius and Singleton bound are established. The relation between MDS codes and $I$-perfect codes for any ideal $I$ is investigated. Moreover, the duality theorem for an MDS pomset block code is established when all the blocks have the same size.


翻译:鉴于$[ $[ $1, 2,\ldots, $1, 2,\ldots, $1, 部分订单美元, 部分订单$1, 标签地图$pi : [n]\\rightrow\ mathb{N} 美元定义 k_i$, $\sum_ i=1\\\\\\\\\\\\\\\\<unk> pi (i) = N$, 我们定义了 pomset block $d% (Pm,\pi) 美元直接金额(mathbl) 美元(m) 美元(m) 美元(mb) 美元(m) 美元(m) 美元(m) 美元(m) 美元(moperb), 美元(m) 美元(om) 美元(m) 和 美元(colfrea) 美元(l) 美元(m) 美元(sl) rudeal-lock) rudeal_lation (s) listrational_lock) (m) (m) (m) (m) (m) (m) (s) (s) (s) (m) (sl) (m) (sl) (m) (m) (m) (m) (m) (m) (m) (m) (m) (s) (s) (s) (sl) (sl) (sl)</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
73+阅读 · 2021年12月8日
专知会员服务
84+阅读 · 2020年12月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
73+阅读 · 2021年12月8日
专知会员服务
84+阅读 · 2020年12月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员