Ranking intuitionistic fuzzy sets with distance based ranking methods requires to calculate the distance between intuitionistic fuzzy set and a reference point which is known to have either maximum (positive ideal solution) or minimum (negative ideal solution) value. These group of approaches assume that as the distance of an intuitionistic fuzzy set to the reference point is decreases, the similarity of intuitionistic fuzzy set with that point increases. This is a misconception because an intuitionistic fuzzy set which has the shortest distance to positive ideal solution does not have to be the furthest from negative ideal solution for all circumstances when the distance function is nonlinear. This paper gives a mathematical proof of why this assumption is not valid for any of the non-linear distance functions and suggests a hypervolume based ranking approach as an alternative to distance based ranking. In addition, the suggested ranking approach is extended as a new multicriteria decision making method, HyperVolume based ASsessment (HVAS). HVAS is applied for multicriteria assessment of Turkey's energy alternatives. Results are compared with three well known distance based multicriteria decision making methods (TOPSIS, VIKOR, and CODAS).


翻译:将直觉模糊的集合排列为基于距离的排序方法,要求计算直觉模糊的集合和已知具有最大(积极理想解决办法)或最低(消极理想解决办法)值的参考点之间的距离。这些方法组假定,当直觉模糊的集合与参照点的距离下降,直觉模糊的集合与该点增加的相似性。这是一种误解,因为直觉模糊的集合与积极理想解决办法的距离最短,对于远程函数非线性的所有情况,直觉模糊的集合和已知具有最大(积极理想解决办法)或最小(消极理想解决办法)值的参照点之间的距离并不最远。本文从数学上证明这一假设对任何非线性距离函数无效的原因,并提出一种超容量排序方法,作为基于距离的排序的替代方法。此外,所建议的排序方法作为新的多标准决策方法(基于ASsyVolume ASessment (HVASS) ) 扩展为扩展。HVASS用于土耳其能源替代品的多标准评估。结果与三种已知的远程多标准决策方法(TOPIS、VIKOR、CS)比较。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
0+阅读 · 2023年2月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员