We construct a family of linear maximally recoverable codes with locality $r$ and dimension $r+1.$ For codes of length $n$ with $r\approx n^\alpha, 0\le\alpha\le 1$ the code alphabet is of the order $n^{1+3\alpha},$ which improves upon the previously known constructions of maximally recoverable codes.
翻译:对于长度为10美元的代码,我们建造一个以最大可回收值为单位的直线代码系列,其所在地值为$和尺寸为$+1.美元,对于长度为$(约克)näääääalpha, 0\le\alpha\le 1美元,代码字母顺序为$1+3\alpha},这改善了先前已知的最大可回收代码结构。