We construct maximally recoverable codes (corresponding to partial MDS codes) which are based on linearized Reed-Solomon codes. The new codes have a smaller field size requirement compared with known constructions. For certain asymptotic regimes, the constructed codes have order-optimal alphabet size, asymptotically matching the known lower bound.


翻译:我们根据线性Reed-Solomon代码构建了最大可回收代码(相当于部分MDS代码 ) 。 与已知的建筑工程相比,新代码的野外尺寸要求较小。 对于某些无药可救的系统,所构建的代码具有排序至最佳的字母大小,与已知的较低约束值不相上下。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年12月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员