We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $\mathbf{X}^\star$ from the (possibly noisy) observation of $|\mathbf{\Phi} \mathbf{X}^\star|$, in which $\mathbf{\Phi}$ is a matrix of size $m \times n$. We consider a \emph{high-dimensional} setting where $n,m \to \infty$ with $m/n = \mathcal{O}(1)$, and a large class of (possibly correlated) random matrices $\mathbf{\Phi}$ and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal $\mathbf{X}^\star$ which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the \emph{Bethe Hessian}, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix $\mathbf{\Phi}$, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).


翻译:我们考虑阶段检索问题, 观察者希望从 $ mathb_Phi}\ mathb{X{star} 的( 可能很吵的) 观察 $ mathbb_Phi} \ mathb{Xstar} 美元, 美元是一个大小的矩阵 $m\ f\ f\ phi} 美元。 我们考虑一个 maph{ high_ situ} 设置, 美元, 美元/ 美元= mathcal{O}(1)$ 美元, 以及一大批( 可能相关) 随机矩阵 $\ mathbf_Phi} 美元 和观察频道的( 可能具有关联性) 美元 。 光谱方法是一个强大的工具, 用来获得 $mathbxf{X} 美元信号的近似值观测, 然后可以用低计算成本作为后续算法的初始化。 在本文中, 我们扩展和统一先前的光谱方法, 以 美元= 平面检索问题 的平面 。 右 [ 我们使用直径分析 的直观 工具 的方式, 显示 一种直径分析 的方法, 一种直观 的方法 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员