Identifying functional connectivity biomarkers of major depressive disorder (MDD) patients is essential to advance understanding of the disorder mechanisms and early intervention. However, due to the small sample size and the high dimension of available neuroimaging data, the performance of existing methods is often limited. Multi-site data could enhance the statistical power and sample size, while they are often subject to inter-site heterogeneity and data-sharing policies. In this paper, we propose a federated joint estimator, NOTEARS-PFL, for simultaneous learning of multiple Bayesian networks (BNs) with continuous optimization, to identify disease-induced alterations in MDD patients. We incorporate information shared between sites and site-specific information into the proposed federated learning framework to learn personalized BN structures by introducing the group fused lasso penalty. We develop the alternating direction method of multipliers, where in the local update step, the neuroimaging data is processed at each local site. Then the learned network structures are transmitted to the center for the global update. In particular, we derive a closed-form expression for the local update step and use the iterative proximal projection method to deal with the group fused lasso penalty in the global update step. We evaluate the performance of the proposed method on both synthetic and real-world multi-site rs-fMRI datasets. The results suggest that the proposed NOTEARS-PFL yields superior effectiveness and accuracy than the comparable methods.
翻译:确定主要抑郁症(MDD)患者的功能连接生物标志,对于增进对抑郁症机制的理解和早期干预至关重要,然而,由于样本规模小,现有神经成像数据具有很高的广度,现有方法的性能往往有限。多现场数据可以提高统计力和样本规模,同时受到不同地点和数据共享政策的制约。在本文件中,我们提议建立一个联合估计器(NOTARRS-PFL),用于同时学习多种巴伊西亚网络(BNS),并不断优化,以确定MDD病人因疾病引起的变化。我们将各站点和特定地点信息共享的信息纳入拟议的联合学习框架,通过引入集成的拉索罚款来学习个人化的BN结构。我们开发了交替的乘数方向方法,在当地更新步骤中,处理神经成像数据。然后将所学的网络结构传送到全球更新中心,以便不断优化地学习,查明MDDDD病人因疾病引起的变化。我们将各站点之间共享的信息和特定地点信息纳入拟议的联合学习框架框架框架,通过采用组合组合组合组合组合组合组合式的进度,并使用模拟性性性性性性性性结果,对结果进行评估方法。我们提议的全球数据分析。我们提议的升级方法,对数字式式式式的升级式式式式式性能方法,对数字式的升级式的升级式的进度,对结果的升级式式式式式式式式式式式式式式式式式的进度,对结果。