We introduce a bicategorical model of linear logic which is a novel variation of the bicategory of groupoids, profunctors, and natural transformations. Our model is obtained by endowing groupoids with additional structure, called a kit, to stabilize the profunctors by controlling the freeness of the groupoid action on profunctor elements. The theory of generalized species of structures, based on profunctors, is refined to a new theory of \emph{stable species} of structures between groupoids with Boolean kits. Generalized species are in correspondence with analytic functors between presheaf categories; in our refined model, stable species are shown to be in correspondence with restrictions of analytic functors, which we characterize as being stable, to full subcategories of stabilized presheaves. Our motivating example is the class of finitary polynomial functors between categories of indexed sets, also known as normal functors, that arises from kits enforcing free actions. We show that the bicategory of groupoids with Boolean kits, stable species, and natural transformations is cartesian closed. This makes essential use of the logical structure of Boolean kits and explains the well-known failure of cartesian closure for the bicategory of finitary polynomial functors between categories of set-indexed families and cartesian natural transformations. The paper additionally develops the model of classical linear logic underlying the cartesian closed structure and clarifies the connection to stable domain theory.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【NeurIPS2023】因果成分分析
专知会员服务
41+阅读 · 2023年11月13日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【NeurIPS2023】因果成分分析
专知会员服务
41+阅读 · 2023年11月13日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员