Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce. Existing efforts in graph anomaly detection typically only consider the information in a single scale (view), thus inevitably limiting their capability in capturing anomalous patterns in complex graph data. To address this limitation, we propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short). By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph. In maximizing the agreements between instances at both the patch and context levels concurrently, we estimate the anomaly score of each node with a statistical anomaly estimator according to the degree of agreement from multiple perspectives. To further exploit a handful of ground-truth anomalies (few-shot anomalies) that may be collected in real-life applications, we further propose an extended algorithm, ANEMONE-FS, to integrate valuable information in our method. We conduct extensive experiments under purely unsupervised settings and few-shot anomaly detection settings, and we demonstrate that the proposed method ANEMONE and its variant ANEMONE-FS consistently outperform state-of-the-art algorithms on six benchmark datasets.
翻译:从图表数据中异常检测是社交网络、金融和电子商务等许多应用中的一项重要数据挖掘任务。图表异常检测的现有努力通常只考虑单一尺度(视图)中的信息,从而不可避免地限制其在复杂图表数据中捕捉异常模式的能力。为解决这一局限性,我们提议了一个新的框架,即用多尺度热量光电图(简称ANEMONE)来绘制具有多种规模热量光电图(简称ANEMONE)的反常框架。通过使用图形神经网络作为从多个图形尺度(视图)中编码信息的主干网,我们从图表中学习更好的节点代表比例。在尽可能扩大补丁和上下文两个级别之间的协议时,我们同时根据多重观点的一致程度,估算每个节点与统计异常估计器的异常分数。为了进一步利用在现实应用中可能收集的几组地图异常(光速异常),我们进一步建议扩大一个图神经神经网络(ANEMONE-FS)-FS,以将有价值的信息纳入我们的方法中。我们在完全不受监督的设置和背景中进行广泛的实验,我们提出的AN-MAS型模型模型模型中,并持续展示了我们提出的AN-MA-MA-ISAR模型的六式模型。