We thoroughly study a novel but basic combinatorial matrix completion problem: Given a binary incomplete matrix, fill in the missing entries so that every pair of rows in the resulting matrix has a Hamming distance within a specified range. We obtain an almost complete picture of the complexity landscape regarding the distance constraints and the maximum number of missing entries in any row. We develop polynomial-time algorithms for maximum diameter three based on Deza's theorem [Discret. Math. 1973] from extremal set theory. We also prove NP-hardness for diameter at least four. For the number of missing entries per row, we show polynomial-time solvability when there is only one and NP-hardness when there can be at least two. In many of our algorithms, we heavily rely on Deza's theorem to identify sunflower structures. This paves the way towards polynomial-time algorithms which are based on finding graph factors and solving 2-SAT instances.
翻译:我们彻底研究一个新颖但基本的组合矩阵完成问题:鉴于二进制不完整的矩阵,填充缺失的条目,使所生成的矩阵中的每对行都有特定范围内的哈明距离。 我们几乎完整地了解了距离限制和任何行中最大缺失条目数量方面的复杂情况。 我们开发了基于 Deza 的理论[ Discret. Math. 1973] 的最大直径三的多元时间算法。 我们还证明了直径至少四个的NP- 硬性。 对于每行中缺失的条目数量,我们展示了多球时的静默性,而每行中只有1个,而每行中只有2个时的NP- 硬性。 在我们的许多算法中,我们严重依赖Deza 的标语来识别日葵结构。 这为建立基于查找图形因素和解决 2SAT 实例的多球时算法铺平了道路。