项目名称: 关于图的自同态幺半群的研究

项目编号: No.11301151

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 侯海龙

作者单位: 河南科技大学

项目金额: 22万元

中文摘要: 本项目是半群代数理论和图论的交叉研究,目的在于建立图的组合结构和图的自同态幺半群的代数结构之间的联系,利用图的自同态幺半群的代数性质研究图的组合性质并对图进行分类。我们将在以下五个方面展开研究:(1)研究图的自同态幺半群的代数性质,给出图的自同态幺半群是正则半群、纯整半群和完全正则半群的充分必要条件;(2)刻画图的正则(完全正则)自同态、半强自同态、局部强自同态和拟强自同态,给出其构成含幺半群的充分必要条件;(3)研究图的强自同态幺半群的代数性质,确定可以作为图的强自同态幺半群的含幺半群;(4)解决几类与图的自同态幺半群有关的计数问题,计算图的自同态谱和自同态型;(5)给出图的一些可以由其自同态幺半群确定的组合特征,利用图的这些组合特征对图进行分类。本项目的研究将丰富半群代数理论和图论的研究内容,开辟新的研究途径,促进二者的学科交叉与共同发展。

中文关键词: 自同态;强自同态;含幺半群;图;自同构群

英文摘要: This program is devote to the study of the algebraic theory of semigroups and graph theory. The aim of this research is try to establish the relationship between graph and its endomorphism. We will study the following five areas: (1)Some properties of the endomorphism monoids of graphs will be explored. The conditions under which the endomorphism monoids of graphs are regular,orthodox, or completely regular will be given; (2)The half-strong endomorphisms, the locally-strong endomorphisms, the quasi-strong endomorphisms and the (completely) regular endomorphisms of graphs will be characterized. The conditions under which the sets of the above endomorphisms form a monoid will be given;(3)Some algebraic properties of the strong endomorphism monoids of graphs will be explored and the monoids which can be used as the strong endomorphism monoids of some graphs will be determinded; (4) Some enumerative problems concerning the endomorphism monoids of certain graphs will be solved. In particular, the endomorphism spectra and the endomorphism type of these graphs will be given; (5) Some combinatorial characteristics which are determined by its endomorphism monoids will be given and the graph will be classified by these combinatorial characteristics. The research of this scheme will enrich the contents of graph theory and

英文关键词: endomorphism;strong endomorphism;monoid;graph;automorphism group

成为VIP会员查看完整内容
0

相关内容

专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
86+阅读 · 2021年6月30日
专知会员服务
26+阅读 · 2021年4月21日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
105+阅读 · 2021年3月1日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
197+阅读 · 2020年5月2日
对凸优化(Convex Optimization)的一些浅显理解
PaperWeekly
1+阅读 · 2022年1月29日
KDD'21 | 图神经网络如何建模长尾节点?
图与推荐
6+阅读 · 2021年10月18日
解读 | 得见的高斯过程
机器学习算法与Python学习
14+阅读 · 2019年2月13日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关主题
相关VIP内容
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
86+阅读 · 2021年6月30日
专知会员服务
26+阅读 · 2021年4月21日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
105+阅读 · 2021年3月1日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
197+阅读 · 2020年5月2日
相关资讯
对凸优化(Convex Optimization)的一些浅显理解
PaperWeekly
1+阅读 · 2022年1月29日
KDD'21 | 图神经网络如何建模长尾节点?
图与推荐
6+阅读 · 2021年10月18日
解读 | 得见的高斯过程
机器学习算法与Python学习
14+阅读 · 2019年2月13日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员