We consider the following problem: for a given graph $G$ and two integers $k$ and $d$, can we apply a fixed graph operation at most $k$ times in order to reduce a given graph parameter $\pi$ by at least $d$? We show that this problem is NP-hard when the parameter is the independence number and the graph operation is vertex deletion or edge contraction, even for fixed $d=1$ and when restricted to chordal graphs. We give a polynomial time algorithm for bipartite graphs when the operation is edge contraction, the parameter is the independence number and $d$ is fixed. Further, we complete the complexity dichotomy on $H$-free graphs when the parameter is the clique number and the operation is edge contraction by showing that this problem is NP-hard in $(C_3+P_1)$-free graphs even for fixed $d=1$. When the operation is edge deletion and the parameter is the chromatic number, we determine the computational complexity of the associated problem on cographs and complete multipartite graphs. Our results answer several open questions stated in [Diner et al., Theoretical Computer Science, 746, p. 49-72 (2012)].
翻译:我们考虑了以下问题:对于一个特定的图形,$G$和两个整数美元和美元,我们能否应用一个固定的图形操作,最多以美元计算,以将一个特定的图形参数至少减少1美元=pi美元?我们显示,当参数是独立数字,而图形操作是顶点删除或边缘收缩时,这个问题是NP硬的,即使对于固定的美元=1美元,也仅限于chordal图形。当操作是边缘收缩,参数是独立数字,而美元是固定的。此外,当参数是圆点数时,我们用不含$的图形来完成“$H$”的复杂二分法;当参数是圆点数,而操作是边缘收缩时,我们发现这个问题是NP硬的(C_3+P_1美元),甚至固定的美元=1美元。当操作是边缘删除时,而参数是染色体数字时,我们为双面图,我们确定相关问题的计算复杂性。此外,我们通过显示这个参数是C_3+P_1-46,我们的一些公开的问题来回答第49号计算机。