In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of the solutions and prove its convergence. The proofs rely on a discrete entropy-dissipation inequality, discrete compactness arguments, and on the novel adaptation of the so-called duality method at the discrete level. Finally, thanks to numerical experiments, we investigate the influence of the nonlocality in the system: on convergence properties of the scheme, as an approximation of the local system and on the development of diffusive instabilities.
翻译:本文分析非本地版本的Sigesada-Kawazaki-Teramoto(SKT)交叉扩散系统(SKT)的有限量计划。我们证明该计划存在解决方案,从质量上得出解决方案的特性并证明其趋同。证据依赖于离散的银河分解不平等、离散的紧凑性论点,以及所谓两极分立方法在离散层面的新调整。最后,通过数字实验,我们调查了系统非本地化的影响:对该计划的趋同性的影响:作为地方系统近似的一种近似,对该计划的趋同性的影响,以及对不同不稳定性的发展的影响。