We establish a uniform-in-scaling error estimate for the asymptotic preserving scheme proposed in \cite{XW21} for the L\'evy-Fokker-Planck (LFP) equation. The main difficulties stem from not only the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling $\epsilon$: in the regime where $\epsilon$ is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where $\epsilon$ is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.
翻译:我们为L\'evy-Fokker-Planck (LFP) 等式提议的无空间保存计划确定了一个统一的计算错误估计。主要困难不仅来自缩放参数和数字参数之间的相互作用,而且来自平衡状态尾端的缓慢衰减。我们根据缩放美元相对大小来区分参数域来解决这些问题:在美元数额大的制度中,我们设计了一个加权准则来减轻脂肪尾巴造成的问题,而在美元数额很小的制度中,我们证明LFP与其分块扩散限制有很强的趋同率。这个方法将传统的AP估计扩大到没有统一界限的情况。我们的结果适用于任何维度和分层力量的整个范围。