For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy, including the Willmore and the Helfrich flows, we consider a numerical approach. In this study, we construct a structure-preserving method based on a discrete variational derivative method. Furthermore, to prevent the vertex concentration that may lead to numerical instability, we discretely introduce Deckelnick's tangential velocity. Here, a modification term is introduced in the process of adding tangential velocity. This modified term enables the method to reproduce the equations' properties while preventing vertex concentration. Numerical experiments demonstrate that the proposed approach captures the equations' properties with high accuracy and avoids the concentration of vertices.
翻译:对于包括Willmore和Helfrich流在内的弯曲能量散落的平面曲线第四阶几何进化方程,我们考虑一种数字方法。在本研究中,我们根据离散的变异衍生物法构建了一种结构保留方法。此外,为了防止可能导致数字不稳定的顶点浓度,我们单独引入了Deckelnick的相近速度。在这里,在添加离正速度的过程中引入了一个修改术语。这个修改术语使得该方法能够复制方程的特性,同时防止顶层浓度。数字实验表明,拟议方法非常精确地捕捉了方程的特性,并避免了脊椎的集中。