Many Hamiltonian systems can be recast in multi-symplectic form. We develop a reduced-order model (ROM) for multi-symplectic Hamiltonian partial differential equations (PDEs) that preserves the global energy. The full-order solutions are obtained by finite difference discretization in space and the global energy preserving average vector field (AVF) method. The ROM is constructed in the same way as the full-order model (FOM) applying proper orthogonal decomposition (POD) with the Galerkin projection. The reduced-order system has the same structure as the FOM, and preserves the discrete reduced global energy. Applying the discrete empirical interpolation method (DEIM), the reduced-order solutions are computed efficiently in the online stage. A priori error bound is derived for the DEIM approximation to the nonlinear Hamiltonian. The accuracy and computational efficiency of the ROMs are demonstrated for the Korteweg de Vries (KdV) equation, Zakharov-Kuznetzov (ZK) equation, and nonlinear Schr{\"o}dinger (NLS) equation in multi-symplectic form. Preservation of the reduced energies shows that the reduced-order solutions ensure the long-term stability of the solutions.
翻译:许多汉密尔顿系统可以多分流形式重新铸造。我们为多分流的汉密尔顿部分差异方程式开发了一个减序模型(ROM),用于保护全球能源。全序解决方案是通过空间的有限差异分解和全球平均节能矢量场(AVF)方法获得的。ROM的构建方式与采用与Galerkin投影的正正正正正正正正正方形分解(POD)全序模型(FOM)的全序模型(ROM)一样。减序系统的结构与FOM相同,并保存了离散的减少的全球能源。应用离散的经验性内插法(DEIM),在在线阶段高效计算减序解决方案。一个前置错误是DIM接近非线性汉密尔密尔顿系统(AVFFFF)的方法。ROMs的精确度和计算效率为Kortweg de Vries(KV)方程式、Zakharov-Kuznetzov(ZK)的同一结构,并保存了离散式全球能量减少的能量。减序内分解法的多线性平方程式,在NLS-S-S-S-S-S-S-递减变式解式的多式解式解式解式解式解式解式解式解式解式解。