State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning or Riemannian-Geometry-based decoders. Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability as well as model training questions. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on two public EEG datasets and compared with state-of-the-art ConvNets. Here we propose end-to-end EEG SPDNet (EE(G)-SPDNet), and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible loss of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.
翻译:目前,通过深层次学习或Riemannian-Geoprography的解码器,人们往往能够实现电子脑电图(EEEG)解码任务方面的最先进的表现。最近,对深层次里曼尼亚网络(DRNs)的兴趣日益浓厚,这有可能将前两类方法的优点结合起来。然而,仍有一系列专题需要更多了解,以便为在电子脑电图中更广泛地应用DRN系统铺平道路。其中包括网络设计问题,如网络的深度和端到端能力以及模型培训问题。这些因素如何影响模型的性能,还没有被探索。此外,还不清楚这些网络中的数据是如何被转换的,以及这是否与传统的 EEEGD解码系统(DRN)网络(DRN)网络(DRNEG)的优点。我们的研究的目的是通过对DRNRNs和超度仪的手的分析来为这些主题奠定基础。网络的端端端在两个公开的EEEEG(N-creal-cal-calal-de)路径上进行测试,我们在这里建议将EG-del-de-de-de-de-de-de-deal-de-de-de-eqal-deal-de-de-de-de-eqal-de-dal-de-de-de-de-de-leg-de-de-de-de-de-de-de-de-ex-de-de-de-de-de-legyal-ex-ex-ex-ex-legal-de-legyal-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-ex-ex-ex-ex-ex-ex-de-ex-de-de-de-de-ex-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de