We use the time-harmonic Maxwell partial differential equations (PDEs) to model the wave propagation in 3-D space, which comprises a closed penetrable scatterer and its unbounded free-space complement. Surface integral equations (SIEs) that are equivalent to the time-harmonic Maxwell PDEs provide an efficient framework to directly model the surface electromagnetic fields and hence the RCS.The equivalent SIE system on the interface has the advantages that: (a) it avoids truncation of the unbounded region and the solution exactly satisfies the radiation condition; and (b) the surface-fields solution yields the unknowns in the Maxwell PDEs through surface potential representations of the interior and exterior fields. The Maxwell PDE system has been proven (several decades ago) to be stable for all frequencies, that is, (i) it does not possess eigenfrequencies (it is well-posed); and (ii) it does not suffer from low-frequency. However, weakly-singular SIE reformulations of the PDE satisfying these two properties, subject to a stabilization constraint, were derived and mathematically proven only about a decade ago (see {J. Math. Anal. Appl. 412 (2014) 277-300}). The aim of this article is two-fold: (I) To effect a robust coupling of the stabilization constraint to the weakly singular SIE and use mathematical analysis to establish that the resulting continuous weakly-singular second-kind self-adjoint SIE system (without constraints) retains all-frequency stability; and (II) To apply a fully-discrete spectral algorithm for the all-frequency-stable weakly-singular second-kind SIE, and prove spectral accuracy of the algorithm. We numerically demonstrate the high-order accuracy of the algorithm using several dielectric and absorbing benchmark scatterers with curved surfaces.
翻译:暂无翻译