Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction. In particular, CNN-based direct PET image reconstruction, which directly generates the reconstructed image from the sinogram, has potential applicability to PET image enhancements because it does not require image reconstruction algorithms, which often produce some artifacts. However, these deep learning-based, direct PET image reconstruction algorithms have the disadvantage that they require a large number of high-quality training datasets. In this study, we propose an unsupervised direct PET image reconstruction method that incorporates a deep image prior framework. Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised direct PET image reconstruction from sinograms. To compare our proposed direct reconstruction method with the filtered back projection (FBP) and maximum likelihood expectation maximization (ML-EM) algorithms, we evaluated using Monte Carlo simulation data of brain [$^{18}$F]FDG PET scans. The results demonstrate that our proposed direct reconstruction quantitatively and qualitatively outperforms the FBP and ML-EM algorithms with respect to peak signal-to-noise ratio and structural similarity index.
翻译:特别是,有线电视新闻网的直接PET图像重建,直接生成了从罪状图中重建的图像,这有可能适用于PET图像的增强,因为它不需要图像重建算法,而这种算法往往产生一些文物。然而,这些深层次的基于学习的直接PET图像重建算法的缺点是,它们需要大量的高质量培训数据集。在本研究中,我们建议采用一种不受监督的直接PET图像重建方法,其中包括一个先前的深层图像框架。我们提议的方法包括一个具有损失功能的前方预测模型,以便从罪状图中实现不受监督的直接PET图像重建。为了将我们拟议的直接重建方法与过滤的后投影(FBP)和最大可能的预期最大化算法进行比较,我们用蒙特卡洛的大脑模拟数据[18美元]FDG PET扫描了这些算法。结果表明,我们提议的直接重建定量和定性比FBP和M-L-EM结构图象与峰值和ML-EM图象与最高信号比对最高值和最高信号比。