More than 40 years ago, Schroeppel and Shamir presented an algorithm that solves the Subset Sum problem for $n$ integers in time $O^*(2^{0.5n})$ and space $O^*(2^{0.25n})$. The time upper bound remains unbeaten, but the space upper bound has been improved to $O^*(2^{0.249999n})$ in a recent breakthrough paper by Nederlof and W\k{e}grzycki (STOC 2021). Their algorithm is a clever combination of a number of previously known techniques with a new reduction and a new algorithm for the Orthogonal Vectors problem. In this paper, we give two new algorithms for Subset Sum. We start by presenting an Arthur--Merlin algorithm: upon receiving the verifier's randomness, the prover sends an $n/4$-bit long proof to the verifier who checks it in (deterministic) time and space $O^*(2^{n/4})$. The simplicity of this algorithm has a number of interesting consequences: it can be parallelized easily; also, by enumerating all possible proofs, one recovers upper bounds on time and space for Subset Sum proved by Schroeppel and Shamir in 1979. As it is the case with the previously known algorithms for Subset Sum, our algorithm follows from an algorithm for $4$-SUM: we prove that, using verifier's coin tosses, the prover can prepare a $\log_2 n$-bit long proof verifiable in time $\tilde{O}(n)$. Another interesting consequence of this result is the following fine-grained lower bound: assuming that $4$-SUM cannot be solved in time $O(n^{2-\varepsilon})$ for all $\varepsilon>0$, Circuit SAT cannot be solved in time $O(g2^{(1-\varepsilon)n})$, for all $\varepsilon>0$. Then, we improve the space bound by Nederlof and W\k{e}grzycki to $O^*(2^{0.246n})$ and also simplify their algorithm and its analysis. We achieve this space bound by further filtering sets of subsets using a random prime number. This allows us to reduce an instance of Subset Sum to a larger number of instances of smaller size.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
25+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员