We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games. Using this game, we prove hazard-free formula size and depth lower bounds that are provably stronger than those possible by the standard technique of transferring results from monotone complexity in a black-box fashion. For the multiplexer function we give (1) a hazard-free formula of optimal size and (2) an improved low-depth hazard-free formula of almost optimal size and (3) a hazard-free formula with alternation depth $2$ that has optimal depth. We then use our optimal constructions to obtain an improved universal worst-case hazard-free formula size upper bound. We see our results as a significant step towards establishing hazard-free computation as an independent missing link between Boolean complexity and monotone complexity.
翻译:我们展示了一个 Karchmer- Wigderson 游戏, 研究无危害公式的复杂性。 这个新游戏既是单色 Karchmer- Wigderson 游戏的概括化, 也是经典的 Boolean Karchmer- Wigderson 游戏的模拟。 因此, 它可以作为现有单色和普通游戏之间的桥梁。 使用这个游戏, 我们证明无危害公式的大小和深度比以黑盒方式传输单色组合结果的标准技术可能强。 对于多色函数来说, 我们给它 (1) 一个最佳的无危害公式, 和 (2) 一个更先进的低度无危害公式, 几乎是最佳的尺寸, (3) 一个有最佳深度的无危害公式。 然后我们用我们的最佳构造来获得一个更好的无危害公式的最小值。 我们把结果视为一个重大步骤, 以建立无危害计算方法, 将它作为Boolean 复杂度和单色复杂度之间的独立缺失环节。