In turbulence modeling, and more particularly in the Large-Eddy Simulation (LES) framework, we are concerned with finding closure models that represent the effect of the unresolved subgrid-scales on the resolved scales. Recent approaches gravitate towards machine learning techniques to construct such models. However, the stability of machine-learned closure models and their abidance by physical structure (e.g. symmetries, conservation laws) are still open problems. To tackle both issues, we take the `discretize first, filter next' approach, in which we apply a spatial averaging filter to existing energy-conserving (fine-grid) discretizations. The main novelty is that we extend the system of equations describing the filtered solution with a set of equations that describe the evolution of (a compressed version of) the energy of the subgrid-scales. Having an estimate of this energy, we can use the concept of energy conservation and derive stability. The compressed variables are determined via a data-driven technique in such a way that the energy of the subgrid-scales is matched. For the extended system, the closure model should be energy-conserving, and a new skew-symmetric convolutional neural network architecture is proposed that has this property. Stability is thus guaranteed, independent of the actual weights and biases of the network. Importantly, our framework allows energy exchange between resolved scales and compressed subgrid scales and thus enables backscatter. To model dissipative systems (e.g. viscous flows), the framework is extended with a diffusive component. The introduced neural network architecture is constructed such that it also satisfies momentum conservation. We apply the new methodology to both the viscous Burgers' equation and the Korteweg-De Vries equation in 1D and show superior stability properties when compared to a vanilla convolutional neural network.


翻译:在动荡的建模中,特别是大干旱模拟(LES)框架中,我们关心的是找到代表未解决的亚电离层的关闭模型,这些模型代表了未解决的亚电离层在已解决的尺度上的影响。最近的方法是向机器学习技术引力,以构建这些模型。然而,机器学的封闭模型的稳定性及其以物理结构(例如对称、保护法)的适中度,仍然是尚未解决的问题。为了解决这两个问题,我们采用了“先分解,过滤下一个”的方法,即将空间平均过滤器应用于现有的电离层(fine-grid)离散。主要的新颖之处是,我们扩展了描述过滤式解决方案的方程式系统,用一套方程式来描述(压缩版)亚电离层结构(例如对称对称、保护法)的演变过程。我们可以使用节能概念并得出稳定性。我们通过数据驱动的变压法来确定了亚电离层的变异度,从而使得新电网的能量能够匹配。对于扩展的系统来说,关闭的网络模型就是保证了这种变压和变压结构结构结构的变压结构。因此,这种变压结构的模型应该显示新的变压结构是新的变压结构的变压和变压结构的变压结构。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员