Contrastive self-supervised learning methods famously produce high quality transferable representations by learning invariances to different data augmentations. Invariances established during pre-training can be interpreted as strong inductive biases. However these may or may not be helpful, depending on if they match the invariance requirements of downstream tasks or not. This has led to several attempts to learn task-specific invariances during pre-training, however, these methods are highly compute intensive and tedious to train. We introduce the notion of amortised invariance learning for contrastive self supervision. In the pre-training stage, we parameterize the feature extractor by differentiable invariance hyper-parameters that control the invariances encoded by the representation. Then, for any downstream task, both linear readout and task-specific invariance requirements can be efficiently and effectively learned by gradient-descent. We evaluate the notion of amortised invariances for contrastive learning over two different modalities: vision and audio, on two widely-used contrastive learning methods in vision: SimCLR and MoCo-v2 with popular architectures like ResNets and Vision Transformers, and SimCLR with ResNet-18 for audio. We show that our amortised features provide a reliable way to learn diverse downstream tasks with different invariance requirements, while using a single feature and avoiding task-specific pre-training. This provides an exciting perspective that opens up new horizons in the field of general purpose representation learning.
翻译:自监管的自监管学习方法有名有名地通过学习不同数据增强的变异性来产生高质量的可转让表达式。在培训前的变异性可以被解释为强烈的诱导偏差。然而,这些可能有用与否,取决于它们是否与下游任务的变异性要求相匹配。然而,这导致在培训前学习特定任务变异性的一些尝试,但是,这些方法是非常密集的,容易被训练的。我们引入了为对比性自我监督而进行分解易变式学习的概念。在培训前阶段,我们将特征提取器的变异性区分为不同的不易导偏差性偏差性偏差性偏差性。在培训前阶段,我们将特征提取器的参数以不同的变异性超常性超常参数为参数为参数进行参数的参数参数参数参数化。对于任何下游任务来说,通过渐变色时,线读出和特定任务变异性要求都可以高效和有效地学习。我们评估了两种不同模式的变异性变异性学习概念:视觉和听觉,在两种广泛使用的反向的实地学习方法中,两种是:SimCLRLR和S-Net与S-Net的变异性变异性变异性,在视觉中提供一个稳定的变异性要求,同时提供一个稳定的变异性变异性变异性变异性任务和SVVV,在S-S-S-li和MAAA-S-S-S-S-S-S-IS-IS-SyLA-S-S-SDLM-S-S-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S</s>