This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.
翻译:本文回顾了高斯进程内插参数选择的根本问题。 通过选择高斯进程在参数家庭内的平均值和共变量功能,用户获得了贝叶斯人家庭的程序,以对未知功能进行预测,并且必须选择希望能够提供良好预测性表现的家庭成员。 我们的研究基于评分规则的一般概念,它为建立放假选择和验证标准提供了一个有效的框架,以及基于法沙埃尔和共同作者在2009年提出的设想的扩大可能性标准概念,从而有可能恢复标准选择标准,例如普遍交叉比对标准。 在这种背景下,我们从经验上展示了文献中的若干测试问题,即选择合适的模型类型往往比选择特定选择标准(例如,可能性与放假选择一标准)更重要。 此外,我们的数字结果显示,多数选择标准可以有效地选择马特的常变的常态参数。