We develop a novel and general framework for reduced-bias $M$-estimation from asymptotically unbiased estimating functions. The framework relies on an empirical approximation of the bias by a function of derivatives of estimating function contributions. Reduced-bias $M$-estimation operates either implicitly, by solving empirically-adjusted estimating equations, or explicitly, by subtracting the estimated bias from the original $M$-estimates, and applies to models that are partially- or fully-specified, with either likelihoods or other surrogate objectives. Automatic differentiation can be used to abstract away the only algebra required to implement reduced-bias $M$-estimation. As a result, the bias reduction methods we introduce have markedly broader applicability with more straightforward implementation and less algebraic or computational effort than other established bias-reduction methods that require resampling or evaluation of expectations of products of log-likelihood derivatives. If $M$-estimation is by maximizing an objective, then there always exists a bias-reducing penalized objective. That penalized objective relates closely to information criteria for model selection, and can be further enhanced with plug-in penalties to deliver reduced-bias $M$-estimates with extra properties, like finiteness in models for categorical data. The reduced-bias $M$-estimators have the same asymptotic distribution as the original $M$-estimators, and, hence, standard procedures for inference and model selection apply unaltered with the improved estimates. We demonstrate and assess the properties of reduced-bias $M$-estimation in well-used, prominent modelling settings of varying complexity.
翻译:我们为低比值的低比值估算开发了一个新的和一般的框架,这种框架来自非象征性的不带偏见的估计功能。这个框架依赖于通过估算函数贡献的衍生物函数,对偏差进行实验性近似。 降低比值估算值,或者通过解决经经验调整的估算方程,或者明确,从原始的美元估算值中减去估计偏差,并适用于部分指定或完全指定的模型,有的是可能性,有的是其他替代目标。可以使用自动差异来抽取执行降低比值的比值,而只有执行降低比值的估算值,才能对偏差进行实测。结果,我们采用的减少偏差方法比其他既定的减少偏差估计方程工作要隐含性,解决经经验调整后的估计方程,或者通过减少对日志类衍生物产品的预期值估计值。如果美元估算值通过尽可能提高一个目标,那么我们总是存在一种纠正偏差的目标。这个受处罚的目标与模型选择的明显比值的比值标准标准值标准值标准值标准值(美元)的比值非常广泛,并且通过降低比值的精确的比值程序更精确地提高。