This work is concerned with approximating a trivariate function defined on a tensor-product domain via function evaluations. Combining tensorized Chebyshev interpolation with a Tucker decomposition of low multilinear rank yields function approximations that can be computed and stored very efficiently. The existing Chebfun3 algorithm [Hashemi and Trefethen, SIAM J. Sci. Comput., 39 (2017)]uses a similar format but the construction of the approximation proceeds indirectly, via a so called slice-Tucker decomposition. As a consequence, Chebfun3 sometimes uses unnecessarily many function evaluations and does not fully benefit from the potential of the Tucker decomposition to reduce, sometimes dramatically, the computational cost. We propose a novel algorithm Chebfun3F that utilizes univariate fibers instead of bivariate slices to construct the Tucker decomposition. Chebfun3F reduces the cost for the approximation in terms of the number of function evaluations for nearly all functions considered, typically by 75%, and sometimes by over 98%.
翻译:这项工作涉及通过功能评估来接近一个在 ARD 产品 域上定义的三变函数。 将 Chebyshev 的 Expolized 切比谢夫 插入 和 塔克 分解 的 低多线级 产量 函数 近似 、 可以 高效 计算 和 储存 。 现有的 Chebfun3 算法 [Hashemi 和 Trefethen, SIAM J. Sci. Comput., 39 (2017年 ) 使用类似格式, 却通过所谓的切片- Tucker 分解法间接地构建近似近似值。 结果, Chebfun3 有时不必要地使用许多函数评价, 并且没有充分利用塔克分解法 的潜力, 来降低 计算 成本 。 我们建议采用新的 Chebun3F 算法, 使用 使用 单体纤维, 而不是 双体切切片来构建塔 。 。 Chebfun3F 将 降低 近似 功能评估 的成本, 几乎 所有 功能 的 包括 75% 超过 98% 。