In this work, we investigate a model order reduction scheme for high-fidelity nonlinear structured parametric dynamical systems. More specifically, we consider a class of nonlinear dynamical systems whose nonlinear terms are polynomial functions, and the linear part corresponds to a linear structured model, such as second-order, time-delay, or fractional-order systems. Our approach relies on the Volterra series representation of these dynamical systems. Using this representation, we identify the kernels and, thus, the generalized multivariate transfer functions associated with these systems. Consequently, we present results allowing the construction of reduced-order models whose generalized transfer functions interpolate these of the original system at pre-defined frequency points. For efficient calculations, we also need the concept of a symmetric Kronecker product representation of a tensor and derive particular properties of them. Moreover, we propose an algorithm that extracts dominant subspaces from the prescribed interpolation conditions. This allows the construction of reduced-order models that preserve the structure. We also extend these results to parametric systems and a special case (delay in input/output). We demonstrate the efficiency of the proposed method by means of various numerical benchmarks.


翻译:在这项工作中,我们调查了高非线性非线性结构化参数动态系统减少订单的示范计划。更具体地说,我们考虑的是非线性动态系统的一类非线性动态系统,其非线性术语是多线性功能,线性部分与线性结构模型相对应。我们的方法依赖于这些动态系统的Volterra系列代表。我们使用这种表示法,确定内核,从而确定与这些系统相关的普遍多变性转移功能。因此,我们提出的结果允许建造一些非线性动态系统,这些非线性动态系统的一般转移功能在预设的频率点将原系统的这些功能相互推导。为了高效计算,我们还需要一种对称Kronecker产品代表数的概念,并由此产生特定的特性。此外,我们提出一种算法,从规定的内推条件中提取占支配地位的子空间。这样就可以构建维护结构的减序模型。我们还将这些结果扩大到参数系统和特殊案例(在输入/输出法中),我们用各种数字方法展示了拟议的方法的效率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员