We exhibit the analog of the entropy map for multivariate Gaussian distributions on local fields. As in the real case, the image of this map lies in the supermodular cone and it determines the distribution of the valuation vector. In general, this map can be defined for non-archimedian valued fields whose valuation group is an additive subgroup of the real line, and it remains supermodular. We also explicitly compute the image of this map in dimension 3.


翻译:我们展示了本地域多变量高斯分布的星盘映射图的类比。 和真实的情况一样, 该映射的图像位于超模式锥体中, 它决定着估值矢量的分布 。 一般来说, 该映射可以被定义为非结构价值的域, 其估值组是真实线的相加子集, 并且仍然是超模式 。 我们还在维度 3 中明确计算此映射的图像 。

0
下载
关闭预览

相关内容

【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月3日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员