Copula models are flexible tools to represent complex structures of dependence for multivariate random variables. According to Sklar's theorem (Sklar, 1959), any d-dimensional absolutely continuous density can be uniquely represented as the product of the marginal distributions and a copula function which captures the dependence structure among the vector components. In real data applications, the interest of the analyses often lies on specific functionals of the dependence, which quantify aspects of it in a few numerical values. A broad literature exists on such functionals, however extensions to include covariates are still limited. This is mainly due to the lack of unbiased estimators of the copula function, especially when one does not have enough information to select the copula model. Recent advances in computational methodologies and algorithms have allowed inference in the presence of complicated likelihood functions, especially in the Bayesian approach, whose methods, despite being computationally intensive, allow us to better evaluate the uncertainty of the estimates. In this work, we present several Bayesian methods to approximate the posterior distribution of functionals of the dependence, using nonparametric models which avoid the selection of the copula function. These methods are compared in simulation studies and in two realistic applications, from civil engineering and astrophysics.
翻译:Copula 模型是代表多变随机变量依赖性复杂结构的灵活工具。 根据 Sklar 的理论(Sklar,1959年),任何维绝对连续密度都可以作为边际分布的产物和包含矢量组成部分之间依赖性结构的合金函数的独特体现。在真实的数据应用中,分析的兴趣往往取决于依赖性的具体功能,这些功能以几个数字值量化其各个方面。关于这些功能的广泛文献存在,但包括共变函数的扩展仍然有限。这主要是由于缺乏对合差函数的公正估计,特别是当一个人没有足够的信息来选择合差模型时。最近计算方法和算法的进展使得人们可以推断存在复杂的可能性功能,特别是在Bayesian 方法中,这些方法尽管在计算上很密集,但使我们能够更好地评估估计估计数的不确定性。在这项工作中,我们提出了几种巴耶斯方法来估计依赖性功能的后方分布。这主要是由于缺乏公正的估计器,特别是当一个人没有足够信息来选择合差模型时。在计算方法和算算算法中,这些方法是比较了两种方法,在模拟和模拟中避免选择民用工程的物理功能。这些方法。