Many works in statistics aim at designing a universal estimation procedure, that is, an estimator that would converge to the best approximation of the (unknown) data generating distribution in a model, without any assumption on this distribution. This question is of major interest, in particular because the universality property leads to the robustness of the estimator. In this paper, we tackle the problem of universal estimation using a minimum distance estimator presented in Briol et al. (2019) based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations.
翻译:许多统计工作旨在设计一个通用估算程序,即一个估算器,该估算器将汇集到一个模型中(未知)数据生成分布的最佳近似值,而没有对这一分布作出任何假设。这个问题具有重大意义,特别是因为普遍性属性导致估算器的稳健性。在本文中,我们用基于最大平均值差异的Briol等人(2019年)在Briol等人(2019年)中展示的最小距离估计器解决了普遍估算问题。我们表明,估算器对依赖性和数据集中外部离子的存在都具有很强性。最后,我们提供了用于计算估算估算估算测量器的随机梯度下位算法的理论研究,我们用数字模拟来支持我们的调查结果。