Although local differential privacy (LDP) protects individual users' data from inference by an untrusted data curator, recent studies show that an attacker can launch a data poisoning attack from the user side to inject carefully-crafted bogus data into the LDP protocols in order to maximally skew the final estimate by the data curator. In this work, we further advance this knowledge by proposing a new fine-grained attack, which allows the attacker to fine-tune and simultaneously manipulate mean and variance estimations that are popular analytical tasks for many real-world applications. To accomplish this goal, the attack leverages the characteristics of LDP to inject fake data into the output domain of the local LDP instance. We call our attack the output poisoning attack (OPA). We observe a security-privacy consistency where a small privacy loss enhances the security of LDP, which contradicts the known security-privacy trade-off from prior work. We further study the consistency and reveal a more holistic view of the threat landscape of data poisoning attacks on LDP. We comprehensively evaluate our attack against a baseline attack that intuitively provides false input to LDP. The experimental results show that OPA outperforms the baseline on three real-world datasets. We also propose a novel defense method that can recover the result accuracy from polluted data collection and offer insight into the secure LDP design.


翻译:虽然当地差异隐私保护(LDP)保护个人用户的数据不受不受不受不信任的数据保管人不信任的数据保管人(LDP)的推断,但最近的研究表明,攻击者可以从用户方面发动数据中毒攻击,将精心制作的假数据输入LDP协议,以便最大限度地扭曲数据保管人的最后估计。在这项工作中,我们进一步推广这一知识,提出一种新的细微攻击,使攻击者能够微调并同时操纵作为许多现实世界应用的流行分析任务的平均值和差异估计。为实现这一目标,攻击者可以利用LDP的特点将假数据输入当地LDP的输出域。我们称我们攻击产出中毒攻击(OPA)是为了最大限度地扭曲数据最后估计。我们观察到安全隐私损失会加强LDP的安全性,这与已知的安全性-隐私交易与先前工作相矛盾。我们进一步研究了攻击者对数据中毒威胁性攻击的一贯性和更全面的看法。为了实现这一目标,我们全面评价了LDP的特征,将我们的基线攻击将假数据输入当地LDP的输出域域域域。我们称之为我们攻击的输出中毒攻击(OPA)的准确性攻击性攻击,我们称之为攻击性攻击性攻击性攻击性攻击性攻击(OPDP),也提出一个真实的精确的基线数据采集的数据收集。</s>

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员