Methods based on Denoising Diffusion Probabilistic Models (DDPM) became a ubiquitous tool in generative modeling. However, they are mostly limited to Gaussian and discrete diffusion processes. We propose Star-Shaped Denoising Diffusion Probabilistic Models (SS-DDPM), a model with a non-Markovian diffusion-like noising process. In the case of Gaussian distributions, this model is equivalent to Markovian DDPMs. However, it can be defined and applied with arbitrary noising distributions, and admits efficient training and sampling algorithms for a wide range of distributions that lie in the exponential family. We provide a simple recipe for designing diffusion-like models with distributions like Beta, von Mises--Fisher, Dirichlet, Wishart and others, which can be especially useful when data lies on a constrained manifold such as the unit sphere, the space of positive semi-definite matrices, the probabilistic simplex, etc. We evaluate the model in different settings and find it competitive even on image data, where Beta SS-DDPM achieves results comparable to a Gaussian DDPM.
翻译:基于去噪扩散概率模型(DDPM)的方法已成为生成建模中常用的工具。然而,它们大多局限于高斯和离散扩散过程。我们提出了星形去噪扩散概率模型(SS-DDPM),这是一种具有非马尔科夫扩散噪声的模型,类似于扩散过程。在高斯分布的情况下,该模型等效于马尔可夫DDPM。但是,它可以定义和应用于任意噪声分布,并且适用于广泛的属于指数族的分布的有效训练和采样算法。我们提供了一个简单的配方,用于设计类似Beta、von Mises-Fisher、Dirichlet、Wishart等分布的扩散模型,这在数据位于约束流形(如单位球、正半定矩阵空间、概率单纯形等)上时可以特别有用。我们在不同的设置中评估模型,并发现即便在图像数据上,Beta SS-DDPM也可达到与高斯DDPM相当的结果。