Nowadays, the deployment of deep learning based applications on edge devices is an essential task owing to the increasing demands on intelligent services. However, the limited computing resources on edge nodes make the models vulnerable to attacks, such that the predictions made by models are unreliable. In this paper, we investigate latency attacks on deep learning applications. Unlike common adversarial attacks for misclassification, the goal of latency attacks is to increase the inference time, which may stop applications from responding to the requests within a reasonable time. This kind of attack is ubiquitous for various applications, and we use object detection to demonstrate how such kind of attacks work. We also design a framework named Overload to generate latency attacks at scale. Our method is based on a newly formulated optimization problem and a novel technique, called spatial attention, to increase the inference time of object detection. We have conducted experiments using YOLOv5 models on Nvidia NX. The experimental results show that with latency attacks, the inference time of a single image can be increased ten times longer in reference to the normal setting. Moreover, comparing to existing methods, our attacking method is simpler and more effective.


翻译:现在,基于深度学习的应用在边缘设备上的部署是一项基本任务,因为智能服务的需求日益增长。然而,边缘节点上受限的计算资源使得模型容易受到攻击,导致模型的预测变得不可靠。在本文中,我们研究深度学习应用程序的延迟攻击。与通用的误分类对抗攻击不同,延迟攻击的目标是增加推理时间,这可能导致应用程序无法在合理的时间内响应请求。这种攻击对各种应用程序都很普遍,我们使用对象检测来演示这种攻击的工作原理。我们还设计了一个名为Overload的框架来大规模生成延迟攻击。我们的方法基于一个新的优化问题和一种新颖的技术,称为空间注意力,以增加对象检测的推理时间。我们使用Nvidia NX上的YOLOv5模型进行了实验。实验结果表明,使用延迟攻击,单张图像的推理时间可以比正常设置长十倍。此外,与现有方法相比,我们的攻击方法更简单、更有效。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年10月31日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
一种产生DSN放大攻击的深度学习技术
机器之心
0+阅读 · 2022年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
10+阅读 · 2021年11月10日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
一种产生DSN放大攻击的深度学习技术
机器之心
0+阅读 · 2022年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员