Collaborative SLAM is at the core of perception in multi-robot systems as it enables the co-localization of the team of robots in a common reference frame, which is of vital importance for any coordination amongst them. The paradigm of a centralized architecture is well established, with the robots (i.e. agents) running Visual-Inertial Odometry (VIO) onboard while communicating relevant data, such as e.g. Keyframes (KFs), to a central back-end (i.e. server), which then merges and optimizes the joint maps of the agents. While these frameworks have proven to be successful, their capability and performance are highly dependent on the choice of the VIO front-end, thus limiting their flexibility. In this work, we present COVINS-G, a generalized back-end building upon the COVINS framework, enabling the compatibility of the server-back-end with any arbitrary VIO front-end, including, for example, off-the-shelf cameras with odometry capabilities, such as the Realsense T265. The COVINS-G back-end deploys a multi-camera relative pose estimation algorithm for computing the loop-closure constraints allowing the system to work purely on 2D image data. In the experimental evaluation, we show on-par accuracy with state-of-the-art multi-session and collaborative SLAM systems, while demonstrating the flexibility and generality of our approach by employing different front-ends onboard collaborating agents within the same mission. The COVINS-G codebase along with a generalized front-end wrapper to allow any existing VIO front-end to be readily used in combination with the proposed collaborative back-end is open-sourced. Video: https://youtu.be/FoJfXCfaYDw
翻译:合作性 SLM 是多机器人系统中核心感知的核心, 因为它使机器人团队能够在一个共同参照框架中共同定位, 这对于它们之间的任何协调都至关重要。 中央架构的范式已经牢固确立, 机器人( 代理商)在机上运行视觉- 内部测量( VIO), 同时将相关数据( 例如, Keyframes (KFs)) 与任何任意的VIO 前端数据( 例如, KFs) 兼容到一个中央后端系统( 即服务器), 这后端系统可以随时合并和优化代理人的联合地图。 虽然这些框架已经证明是成功的, 但它们的能力和性能在很大程度上取决于VIO 前端的选择, 从而限制了它们的灵活性。 在这项工作中, 我们介绍COVINS- G, 一个普遍的后端后端结构, 使服务器后端与任何任意的VIO前端数据兼容, 例如, 使用离子的离子系统, 直流的相机, 并沿着Oresseral- 服务器, 在前端服务器前端的前端服务器上, 将一个我们前端服务器- 的服务器- dal- dal- dal- sal- sal- sal- sal- sal- sal- sal- sal- silvial- sal- silvial- silvial- silvial- sal- silvialdalvialvial- sal vialvial- sal- salvial- sal- sal vial- sildaldalvialvialvial- sal vialdald vialdaldaldaldal- sal- sald.