Event-based cameras are new type vision sensors whose pixels work independently and respond asynchronously to brightness change with microsecond resolution, instead of provide stand-ard intensity frames. Compared with traditional cameras, event-based cameras have low latency, no motion blur, and high dynamic range (HDR), which provide possibilities for robots to deal with some challenging scenes. We propose a visual-inertial odometry method for stereo event-cameras based on Kalman filtering. The visual module updates the camera pose relies on the edge alignment of a semi-dense 3D map to a 2D image, and the IMU module updates pose by midpoint method. We evaluate our method on public datasets in natural scenes with general 6-DoF motion and compare the results against ground truth. We show that the proposed pipeline provides improved accuracy over the result of a state-of-the-art visual odometry method for stereo event-cameras, while running in real-time on a standard CPU. To the best of our knowledge, this is the first published visual-inertial odometry algorithm for stereo event-cameras.
翻译:以事件为基础的相机是新型视觉传感器,其像素独立工作,以微秒分辨率对亮度变化作出同步反应,而不是提供立体强度框架。与传统相机相比,以事件为基础的相机具有低悬浮度、无运动模糊度和高动态范围(HDR),为机器人处理一些具有挑战性的场景提供了可能性。我们提出了基于Kalman过滤的立体事件摄像头的视觉-内皮测量方法。视觉模块更新相机的姿势依赖于半感官3D地图与2D图像的边缘对齐,IMU模块的更新以中点方法呈现。我们用一般6-DoF运动对自然场景公共数据集的方法进行评估,并对照地面真相比较结果。我们表明,拟议的管道提高了立体事件立体立体事件状态的视觉测量方法的准确性,同时实时运行在标准CPU上。我们最了解的是,这是首次出版的立体事件立体事件视觉内线测量算法。</s>