Despite the potential benefits of collaborative robots, effective manipulation tasks with quadruped robots remain difficult to realize. In this paper, we propose a hierarchical control system that can handle real-world collaborative manipulation tasks, including uncertainties arising from object properties, shape, and terrain. Our approach consists of three levels of controllers. Firstly, an adaptive controller computes the required force and moment for object manipulation without prior knowledge of the object's properties and terrain. The computed force and moment are then optimally distributed between the team of quadruped robots using a Quadratic Programming (QP)-based controller. This QP-based controller optimizes each robot's contact point location with the object while satisfying constraints associated with robot-object contact. Finally, a decentralized loco-manipulation controller is designed for each robot to apply manipulation force while maintaining the robot's stability. We successfully validated our approach in a high-fidelity simulation environment where a team of quadruped robots manipulated an unknown object weighing up to 18 kg on different terrains while following the desired trajectory.
翻译:尽管合作机器人可能带来好处,但是对四重机器人的有效操纵任务仍然难以实现。 在本文中, 我们提议一个等级控制系统, 能够处理真实世界的合作操作任务, 包括由物体属性、 形状和地形产生的不确定性。 我们的方法由三个级别的控制器组成。 首先, 一个适应控制器计算出在不事先了解物体特性和地形的情况下进行天体操纵所需的力量和时间。 然后, 计算出的力量和时间在四重机器人小组之间最理想地分配。 这个基于 QP 的控制器可以优化每个机器人与物体的接触点位置, 同时满足与机器人- 对象接触有关的限制。 最后, 一个分散的 Loco 控制器的设计是让每个机器人在保持机器人稳定性的同时应用操纵力量。 我们成功地验证了我们的方法, 在一个高度纤维化的模拟环境中, 由四重机器人组成的一个小组操纵了一个在不同地形上达到18公斤的未知物体, 并遵循理想的轨道。</s>