A crucial technology in fully autonomous aerial swarms is collaborative SLAM (CSLAM), which enables the estimation of relative pose and global consistent trajectories of aerial robots. However, existing CSLAM systems do not prioritize relative localization accuracy, critical for close collaboration among UAVs. This paper presents $D^2$SLAM, a novel decentralized and distributed ($D^2$) CSLAM system that covers two scenarios: near-field estimation for high accuracy state estimation in close range and far-field estimation for consistent global trajectory estimation. $D^2$SLAM has a versatile and powerful front-end that can use stereo cameras or omnidirectional cameras as input, the former being easy to obtain and the latter being an excellent solution to the Field of View problem in relative localization. Our experiments verify $D^2$SLAM achieves high accuracy in ego-motion estimation, relative localization, and global consistency. Moreover, distributed optimization algorithms are adopted to achieve the $D^2$ objective to allow the scale-up of the swarm and ensure robustness against network delays. We argue $D^2$SLAM can be applied in a wide range of real-world applications.


翻译:在完全自主的空中群落中,一个至关重要的技术是合作性的SLAM(CSLAM),它能够估计航空机器人的相对面貌和全球一致的轨迹;然而,现有的CSLAM系统并不优先考虑相对本地化的准确性,这对无人驾驶飞行器之间的密切合作至关重要。本文展示的是$D2$SLAM,这是一个新的分散和分布式的(D2$)CSLAM系统,涵盖两种情景:近地点估算近距离高精确度估计,远地点估算一致的全球轨迹估计。 $D2$SLAM有一个多功能和强大的前端,可以使用立体照相机或全射线照相机作为输入,前者容易获得,后者是相对本地化问题的一个极好的解决办法。我们的实验核实$D2SLAM在自我提升估计、相对本地化和全球一致性方面达到很高的准确性。此外,还采用了分布式优化算法,以实现$D2$2美元的全球轨迹估计目标,以便能够扩大超宽度,并确保网络延迟应用。我们争论的是,在现实范围内可以应用$D2$SLAM。</s>

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员